Reservoir Fluid Sampling and Analysis for Unconventional Reservoirs

Presented to the Dallas SPEE Chapter May 9, 2013 by By Toddy Guidry, Reservoir Fluid Services Division of Core Laboratories

Overview

- Intro to PVT: Why? When? What?
 Reservoir Engineering 101
- Sample Sources
 - Brief overview of Surface vs Subsurface
 - pros/cons for each
 - Detailed look at FT tool sampling
- Blueprint for Fluids Program
 - Phase Behavior basics
 - Production Trends
 - PVT, Flow Assurance
 - Experimental theories, Mathematics
- Value of Fluids Testing

The Big Picture: Optimize Recovery?

- Predict reservoir drive mechanism
 - Depletion, expansion, aquifer support
- Determine reservoir geophysical properties
- Determine rock properties
 - Porosity, perm/relative perms, wetting characteristics, capillary pressures
- Determine fluid properties
 - Viscosity, compressibility, gas solubility, density, shrinkage, flow assurance, chemistry, retrograde behavior

Why Collect Reservoir Fluid Samples ?

Formation fluid samples are needed for a variety of reasons. Fluid samples are evaluated in the lab to establish their physical and chemical properties, such as hydrocarbon type and the pressure, volume, temperature (PVT) behavior of the reserves in place. These properties help form the foundation for planning efficient field development. The investment in facilities and processing depends on the amount, types and flow characteristics of fluids in the reservoir.

How large are the reservoirs and what will be the recovery? What kind of crude will be produced?

Does the crude contain 'unwanted' compounds that can inhibit production?

Who gets what, i.e. allocation?

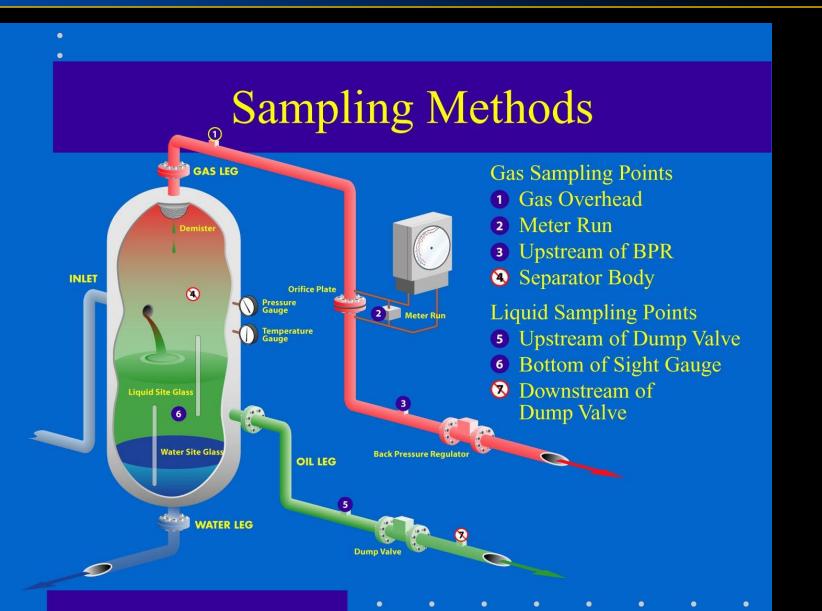
Bottomline: phase behavior, crude quality/price, flow assurances

When?

- Exploration and Appraisal
 - design facilities
 - tune models
 - appraisal well counts
- Development
 - confirmation studies
 - developmental well counts
 - allocation
- Production and Abandonment
 - infill programs
 - facility upgrades
 - EOR
 - allocation

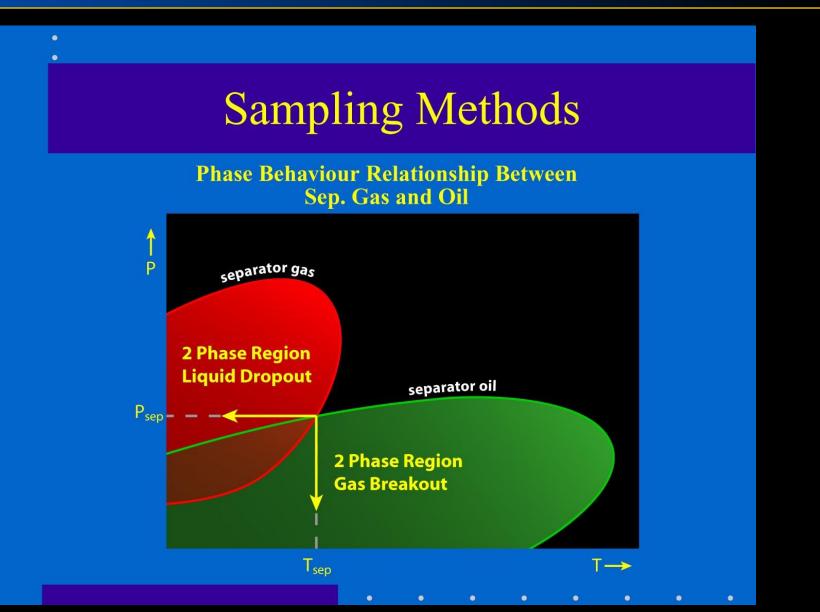
What?

- Phase behavior
- Saturation pressure
- Gas solubility
- Volume of oil at surface per equivalent barrel in reservoir
- Fluid Density
- Fluid viscosity
- Surface recoveries/ratios
- Fluid compressibility
- Compositional analyses
- Atmospheric liquid analyses
- Crude 'quality'
- Flow Assurance properties

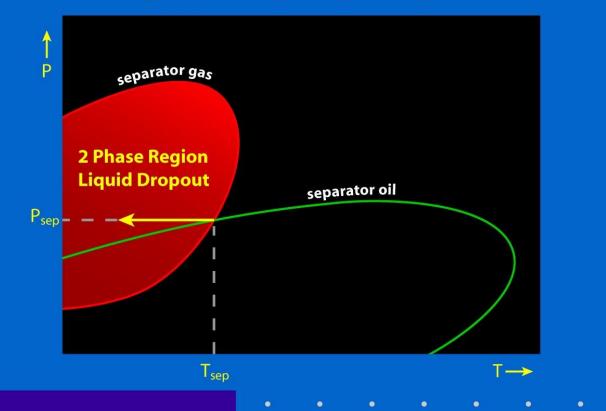

First Things First: Let's get some samples!

- Surface Separator:
 - Large volumes of reservoir fluid are produced
 - Flow rate stability can be monitored, no sense of 'urgency'
 - Multiple sample sets can be collected
 - Drawdown is the enemy, GOR key
 - Unconventional concerns
- Surface Wellhead
 - Likely multi-phase
- Subsurface (Standard Downhole Samples):
 - Ideal when GOR not available or not accurate
 - Recommended for solids analyses


Surface Separator Sampling


Separator Sampling

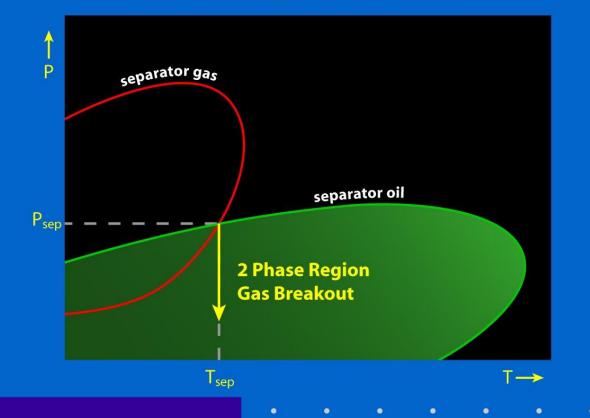
Separator = Mini Reservoir



Sample Altering?

Sampling Methods

Temperature Drop – Liquid Dropout



Sample Altering

Pressure Drop – Gas Breakout

Evaluation of Samples

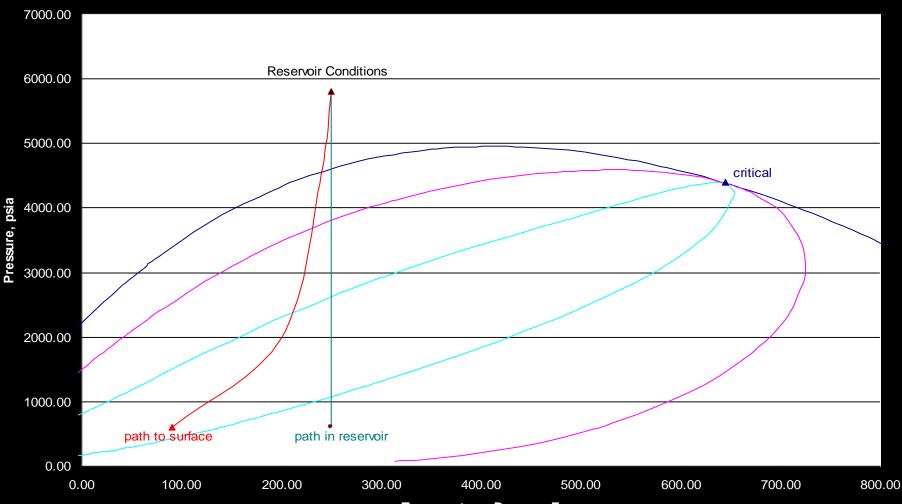
Separator Liquid

- bubble point determination at separator temp
- Methane content vs pressure
- Flash test, ie GOR, composition
- K-P "Hoffman" plot
- Separator Gas
 - Opening pressure
 - Oxygen/nitrogen content
- GOR?
 - Extrapolate to time=0 or initial yield?
- Wellhead
 - Single phase?
- Subsurface: transfer, flash test, bubble point

Wireline Formation Test Tools 'Big' Chambers vs 'Small' Chambers

- 'Big' Chambers
 - 1 gallon, 2 ³/₄ gallon
 - Non-DOT
 - Onsite evaluations
 - Onsite transfers
 - Minimal restoration
 - Time is money\$\$\$

- 'Small' Chambers
 - 400-1000 cc
 - DOT approved, mobile
 - onsite/lab
 evaluations
 - Unlimited restoration
 - Analysis preference



- What is the fluid behavior in the range of expected operating pressures and temperatures
- What is the market price of the discovered hydrocarbons and how can they be accommodated in export systems, ie, sample quality
- Does the fluid have the potential for hydrate, wax or asphaltene precipitation, ie, flow assurance

Reservoir Fluid Behavior

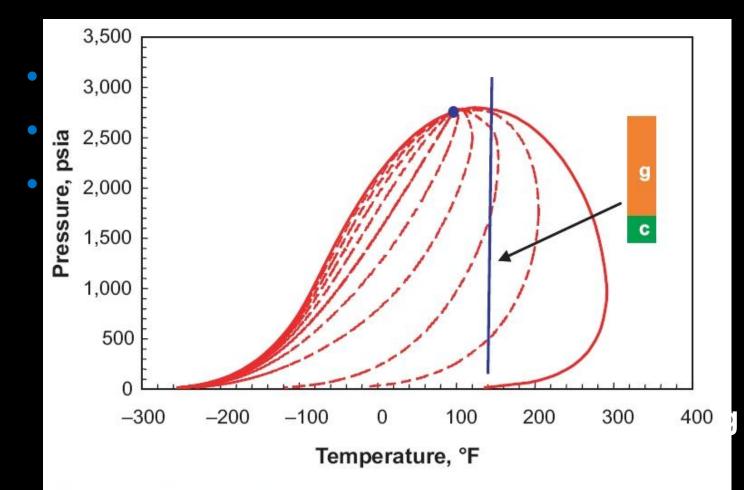
P-T Phase Diagram

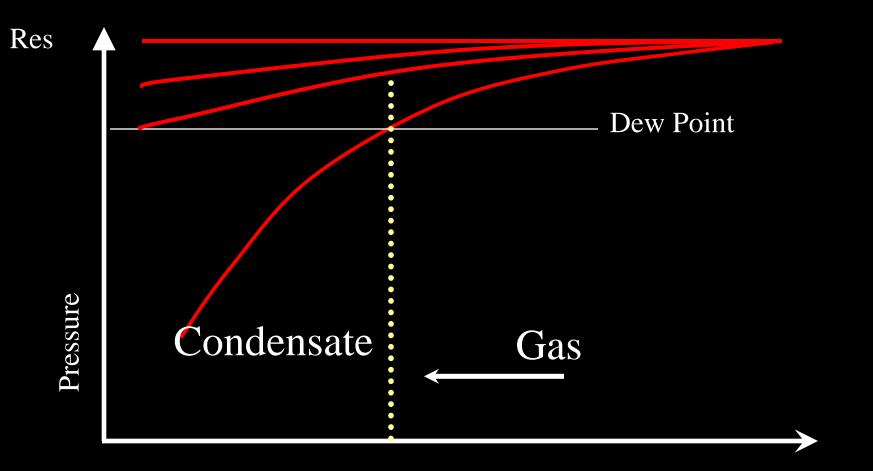
Temperature, Degrees F

Black Oil Reservoirs

- Behavior
 - Heavy oil = lean gas
 - Viscosity discrepancy
 - Simple black oil models
- Production Trends
 - Consistent above bubble point
 - Preferential gas flow, GORs increase
 - Pressure trends
- Lab/operational issues
 - Emulsions, temp control, GC errors, hi viscosity errors
 - Well conditioning, slugging, metering
 - hi viscosity, hi impurities, par/asph, gas lift
 - Sampling inconsistent

Gas-Condensate Behavior

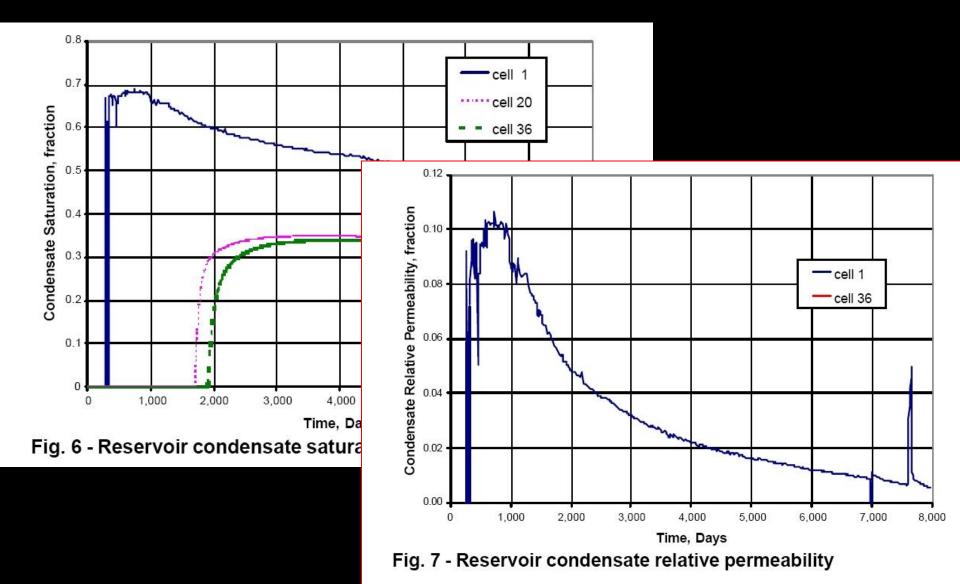



Fig. 1—Phase diagram of gas-condensate system: g=gas and c=condensate.

- Flowing bottomhole pressure drops below dew point in near-wellbore area
 - Condensation begins
- Drawdown extends radially through reservoir
 - Condensate banking leaches out into reservoir
 - High condensate saturation reduces perm of gas
 - High perm vs low perm reservoirs?

Condensate 'Banking'

Distance from wellbore


"During early production, a ring of condensate rapidly formed around the wellbore when near-wellbore pressures decreased below dew point. The saturation of this condensate ring was considerably higher than measured from PVT studies due to relative permeability effects. This high condensate saturation reduced the effective permeability to gas, thereby reducing gas productivity."

"After pressure throughout the reservoir decreased below the dew point, condensate formed throughout the reservoir, thus the gas flowing into the ring became leaner causing the condensate ring to decrease. This increased the effective permeability of the gas. This caused the gas productivity to increase as was observed in the field."

SPE 59773 'Investigation of Well Productivity in G-C Reservoirs'

Banking vs Time

Gas Relative Perm Changes?

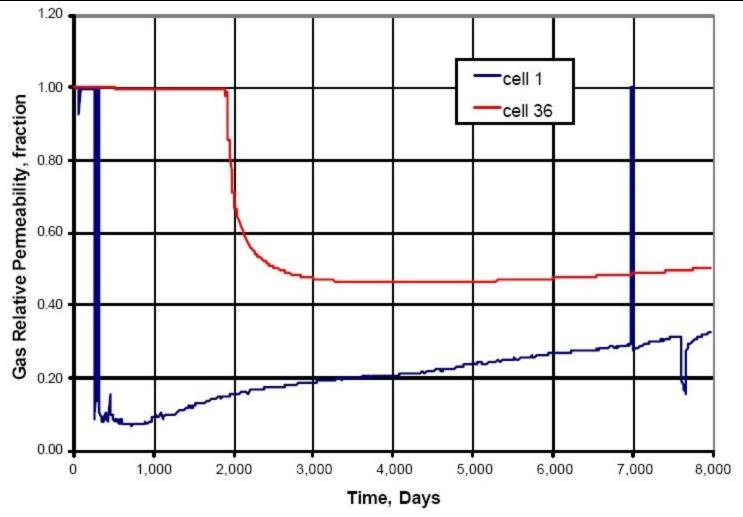
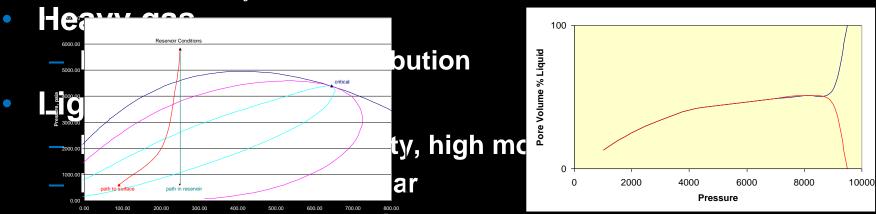


Fig. 8 - Reservoir gas relative permeability

Gas-Condensate Production Trends

- Pressure Trends:
 - No discontinuity
- Gas Production
 - Pressure driven
 - Decrease due to condensation & condensate induced reduction in perm
 - Eventual increase due to increased gas perm
- Pressure Trends:
 - no discontinuity
- Liquid (ie condensate) Production:
 - > Psat = consistent
 - < Psat = decline</pre>
 - − ∴ Yields decline

Summary: What can go wrong with my models?



- Improper well conditioning
 - sample too late in life, significant drawdown
 - Productivity testing vs. PVT testing
- Sample quality
 - 'unsteady state' sampling, gas carryover
- Inaccurate PVT analysis
 - Lean gases, small retrograde liquid volumes
- Gas reservoir testing procedures
 - Drawdown is the enemy
 - Tapered strings? Non-Darcy flow?
 - Unrepresentative gas production

Near-Critical Fluids: Volatile Oils, 'Rich' Gases

- Light oil, heavy gas
- Full range of components
 - Solution gas and oil comps similar

- Large evolution of gas/liquid upon pressure drop
- Handled by compositional model, accounting for both phases, compositional gradients

- Composition: heavies, lights and mid-range
- Light liquid –heavy gas
- Large initial shrinkage and gas liberation
- Gas/liquid comps similar
 - Gas volumes increase SLIGHTLY
 - 'oil' volumes decrease SLIGHTLY
- Volatile Oils:
 - gas/oil viscosity increases, less preferential flow
 - Separator liquid = 1 part oil + 3 parts condensate

PVT Experiments: Simulation of Reservoir Depletion

- Black Oils:
 - Differential liberation, viscosity, separator flash tests
 - Black oil behavior
 - models
- Gas-Condensates:
 - Constant volume depletion
 - Gas-condensate behavior
- Near-Critical, Volatile Oils
 - CVD study, viscosity
 - Oil properties, gas-phase properties
 - Volatile oil behavior, models

'Meat and Potatoes' of a Black Oil PVT Study

	Differential Liberation at 158 °F										
Oil Properties											
Pressure		Oil	Oil	Oil	Liberated	Solution	Oil FVF,	Solution	Sep. Adj.		
Fressure		Density	Compress.	Viscosity	GOR, R _I	GOR, R _{sd}	B _{od}	GOR, R _s	FVF, B _o		
(psia)		(g/cm ³)	(V/V/psi) x 10 ⁶	(cP)	(scf/bbl)	(scf/bbl)	(vol/resid. vol)	(scf/bbl)	(vol/ST vol)		
10,000		0.790	5.63	2.289	0	723	1.306	679	1.282		
9338	Reservoir	0.787	5.88	2.158	0	723	1.311	679	1.287		
9000		0.786	6.02	2.106	0	723	1.314	679	1.290		
8000		0.781	6.46	1.944	0	723	1.322	679	1.298		
7000		0.775	6.97	1.800	0	723	1.332	679	1.307		
6000		0.769	7.56	1.694	0	723	1.342	679	1.317		
5000		0.763	8.26	1.579	0	723	1.353	679	1.328		
4120	Saturation	0.757	9.28	1.498	0	723	1.364	679	1.339		
3250		0.774	5.84	1.797	140	583	1.303	548	1.283		
2400		0.791	5.50	2.227	277	446	1.249	419	1.233		
1500		0.812	5.25	2.936	422	301	1.191	283	1.180		
750		0.831	5.04	3.904	545	178	1.141	168	1.134		
150		0.850	4.84	5.562	659	64	1.088	60	1.085		
15		0.866		6.322	723	0	1.044	0	1.044		
15	at 60 °F	0.899	API = 25.7				1.000				
Vapor Prop	oerties										
	Gas	Gas Z	Incr. Gas	Cum. Gas	Gas FVF,	Gas FVF,	Total FVF,	Calc. Gas			
Pressure	Density	Factor	Gravity	Gravity	B _g	B _g	B _t	Viscosity			
(psia)	(g/cm ³)	(vol/vol at std)	(Air = 1.00)	(Air = 1.00)	(res bbl /mmscf)	(res cu ft / scf)	(vol/resid. vol)	(cP)			
3250	0.179	0.901	0.708	0.708	882	0.0050	1.426	0.022			
2400	0.129	0.890	0.681	0.695	1179	0.0066	1.575	0.018			
1500	0.077	0.906	0.664	0.684	1921	0.0108	2.001	0.015			
750	0.038	0.933	0.681	0.684	3956	0.0222	3.294	0.013			
150	0.009	0.985	0.876	0.717	20882	0.1172	14.851	0.012			
15.025	0.002	1.000	1.607	0.795	212088	1.1908	154.308	0.009			
Notes:											
Compre	ssibility is c	alculated using th	ne indicated and p	previous pressur	r \Box B _o = Oil Volume at P,T / Stock Tank Volume at 60 °F						
The Sep	arator Adjus	sted GOR and FV	F represent the d	ifferentially	$\square B_{od} = Oil Volume at P,T / Residual Oil Volume at 60 °F$						
liberate	d oil produce	ed through the su	rface separators	(see MSF)							
Sep. Adjusted Data using Muhammad A. Al-Marhoun method					$\square B_t = B_0 + [(Total Liberated Vapor, R_1) \times B_0] \times 10^{-6}$						
🗖 Gas MV	/ = Vapor Gra	avity x Molecular V	Veight Air		R ₁ is cumulative liberated gas / Residual Oil Volume						
□ Standard Condition 15.025 psia at 60 °F					Vapor Viscosity calculated with Lee-Gonzales Correlation						
		ompleted at Rese		e	Oil Viscosity measured using electro magnetic viscometer						
	·	-	· · · · · · · · · · · · · · · · · · ·								

So..how good is that oil study?


Flash Comparison								
Experimental	GOR	FVF	Gas	ΑΡΙ				
Procedure	(SCF/STB)	(P _{sat} bbl/STB)	Gravity	at 60 °F				
Reservoir Oil Single-Stage Flash	816	1.339	0.672	21.9				
Differential Liberation @ Res. Temperature	795	1.329	0.652	22.1				
Multi-Stage	771	1.311	0.623	23.1				

 \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O}

What is the longest continuously running science experiment in the world?

Pitch Drop Experiment, started 1927 by Dr Thomas Parnell

Viscosity =

100-300 billion centipoise

Simulation of Reservoir Depletion

- Black Oils:
 - Differential liberation, viscosity
 - Black oil behavior
 - models
- Gas-Condensates:
 - Constant volume depletion
 - Gas-condensate behavior
- Near-Critical, Volatile Oils
 - CVD study, viscosity
 - Oil properties, gas-phase properties
 - Volatile oil behavior, models

Constant Volume Depletion Fluid Compositions								
Component	Saturation Pressure (mole %)	6000 psia (mole %)	5000 psia (mole %)	4000 psia (mole %)	3000 psia (mole %)	2000 psia (mole %)	Liquid at 2000 psia (mole %)	
Nitrogen	0.197	0.236	0.228	0.209	0.184	0.166	0.350	
Carbon Dioxide	0.211	0.225	0.233	0.229	0.220	0.215	0.138	
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Methane	90.098	91.929	92.532	93.057	93.382	93.624	39.429	
Ethane	2.596	2.662	2.676	2.630	2.615	2.543	2.943	
Propane	1.566	1.580	1.588	1.528	1.529	1.459	3.241	
Iso-Butane	0.391	0.377	0.366	0.353	0.345	0.356	1.177	
N-Butane	0.567	0.540	0.505	0.485	0.475	0.476	2.086	
Iso-Pentane	0.257	0.242	0.215	0.194	0.175	0.178	1.407	
N-Pentane	0.254	0.222	0.196	0.170	0.155	0.158	1.661	
Hexanes	0.423	0.330	0.282	0.241	0.207	0.184	3.936	
Heptanes	0.523	0.381	0.335	0.292	0.255	0.235	4.806	
Octanes	0.583	0.368	0.312	0.268	0.236	0.216	6.070	
Nonanes	0.467	0.268	0.213	0.174	0.142	0.120	5.686	
Decanes +	1.867	0.640	0.320	0.170	0.080	0.070	27.068	
Totals	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
C10+ MW	194.4	178.2	169.0	161.0	155.6	150.9	197.0	
Mole Weight	22.69	19.79	19.02	18.57	18.28	18.17	87.73	
Gravity (Air = 1.0)	0.783	0.683	0.657	0.641	0.631	0.627	-	
Z Factor (@ P & T)	1.211	1.061	0.983	0.936	0.926	0.936	-	

Gas Depletion Study

			Calculated	d Surface Ga	s and Liquid	Recovery					
Experimental and Equat	ion of State Predic	tions									
							Pressure (psia)				
				Initial	7232	6000	5000	4000	3000	2000	
					0 700	0.700	0.000	0.544	0.400	0.007	
Moles in PVT Cell Fraction Vapor Liberated / Step	D				0.769 0	0.703 0.066	0.633 0.070	0.544 0.090	0.436 0.107	0.307 0.130	
· · · · · · · · · · · · · · · · · · ·											
EOS Predicted Liquid Fraction	s	(male f	in ation)		0.001	0.050	0.040	0.020	0.004	0.045	
1st Stage: 1015 psia, 96°F 2nd Stage: 515 psia, 72°F			raction)		0.061 0.861	0.056 0.858	0.048 0.856	0.036 0.854	0.024 0.852	0.015 0.851	
3rd Stage: 105 psia, 104°F			raction)		0.829	0.826	0.825	0.823	0.823	0.851	
Stock Tank, 15 psia, 60°F			raction)		0.950	0.949	0.948	0.948	0.947	0.822	
Stock Tank, 15 psia, 60 P		(mole i	raction)		0.950	0.949	0.948	0.948	0.947	0.946	
Predicted Liquid Molar Volume		(cc/r	mole)		184.0	175.9	167.2	158.4	150.9	145.3	
Calculated Surface Reco	overy										
Initial Reservoir Fluid in Place		m	scf	1000	1000						
Vapor Produced / Step			scf	1000	0.0	86.1	90.4	116.6	139.4	168.8	
Cumulative Vapor Produced			scf		0.0	86.1	176.5	293.1	432.5	601.3	
Predicted Surface Liquids		-	tb		0.0	4.3	3.6	3.4	2.6	1.8	
Cumulative Surface Liquids			itb		0.0	4.3	7.9	3.4 11.3	13.9	1.0	
Cumulative Sunace Liquids		5	lD		0.0	4.3	7.9	11.3	13.9	15.7	
Predicted Surface Vapor		m	scf		0.0	82.8	87.5	113.8	137.2	167.2	
Cumulative Surface Gas		m	scf		0.0	82.8	170.4	284.1	421.3	588.5	
Instantaneous Yield		stb/m	nmscf		59.3	51.9	41.6	29.5	18.6	10.9	
Average Yield		stb/m	nmscf		59.3	51.9	46.6	39.7	32.9	26.6	
Instantaneous GCR			/stb		16859	19282	24033	33906	53634	91744	
Average GCR		scf	/stb		16859	19282	21462	25159	30417	37546	
Gas Recovery Factor		q	%		0.0	8.3	17.0	28.4	42.1	58.8	
Liquid Recovery Factor			×	Oslaulat	^^	7. V:-1-1-	44.0	40.0	~ ~ ~		
	Calculated Surface Yields										
		II	nstantaneo	ous Yield					_		
	S 60 → Average Yield						-			1	
	- €	A									
	40 + 00 (BPMW)										
	v 20 +										
	Ū		•								
	> 0 ↓	I								4	
	0	1000	2000	3000	4000	500	0 600	0 70	00 80	000	
	0		1000	2200		200	200			-	

Pressure (psia)

Simulation of Reservoir Depletion

- Black Oils:
 - Differential liberation, viscosity
 - Black oil behavior
 - models
- Gas-Condensates:
 - Constant volume depletion
 - Gas-condensate behavior
- Near-Critical, Volatile Oils
 - CVD study, viscosity
 - Oil properties, gas-phase properties
 - Volatile oil behavior, models

Core Lab Special Fluid Studies

Enhanced Oil Recovery

- Miscible Displacement Studies
- Multi-Contact Studies
- Solubility / Swelling Studies
- Gas Injection Revaporization

Enhanced oil recovery studies are used to define volumetric and compositional changes in a reservoir fluid during secondary and tertiary recovery processes. The data is most often used to define the operating parameters and track fluid changes during an enhanced oil recovery project.

- Models, EOS, Simulators
 - reservoir dynamics, phase behavior
- Measured data used as input to 'tune' models
 - chemical properties altered to 'force' predictions to match behavior
- Multiple scenario, feasibility studies
 - tuned models used to explore other possible environments

Answer 3 Questions:

- What is the fluid behavior in the range of expected operating pressures and temperatures
- What is the market price of the discovered hydrocarbons and how can they be accommodated in export systems, ie, sample quality
- Does the fluid have the potential for hydrate, wax or asphaltene precipitation

Reservoir Fluid Composition

- Flash of reservoir fluid to 0 psig
- GC analysis of flash/separator products
 - -C10+, C20+, C30+, C50+ analyses
 - Internal standard method, distillation method
- Mathematical recombination of flash/separator products to measured GOR from flash (or meter)

Dead Oil (Stock Tank) Analyses 'Pipeline Package'

- Paraffin, Asphaltene, Sulfur Weight %
- Pour Point, Cloud Point
- SARA analysis
- Viscosity (multi-temp)
- Acid Number, Vapor Pressure, BSW
- Fingerprint Analysis, Geochemical Analysis
- Solids Screening

- Long straight hydrocarbon chain molecule (Normal Paraffin)
- With decrease in temperature Wax molecules begin to crystallize (Freeze)
- The onset of Wax Crystals is referred to as Cloud Point
- Reversible behavior
- <u>Problem Avoidance</u>: Sample handling at temperatures > 130°F, production heaters

Asphaltenes

- Defined as pentane or heptane insoluble
- Heaviest and largest molecules in the hydrocarbon mixture (ex: C₇₉H₉₂N₂S₂O, MWT > 750)
- Characteristic black color
- Become unstable with significant changes in density, usually due to changes in pressure,temperature
- Can be stabilized by similar typed 'resins'
- Problems can also occur due to commingling
- <u>Problem Avoidance:</u> Pressure maintenance in reservoir, chemical treatments. Pressure/density maintenance during sample handling. Avoid volume changes.

Pressurized Fluid Imaging (PFI) System

Blueprint for Fluids Program

- Proper sampling
- Chemistry
- Physical properties
 - fluid flow assurance, viscosity etc, dead oil analyses
- Reservoir depletion simulation
 - CME, Diff Lib, CVD
- Surface recovery simulation
 - separator tests
- Mathematics

Kore Lab

RESERVOIR OPTIMIZATION

Thanks for not falling asleep! Questions?

